物联传媒 旗下网站
登录 注册
性能
  • 对于RFID系统来说,天线是至关重要的部分,它与系统的性能紧密相关。
  • RF和微波无源元件承受许多设计约束和性能指标的负担。根据应用的功率要求,对材料和设计性能的要求可以显着提高。
  • 信号源可为各种元器件和系统测试应用提供精确且高度稳定的测试信号。信号发生器则增加了精确的调制功能,可以帮助模拟系统信号,进行接收机性能测试
  • 随着智能ODN的不断发展,越来越多的设备商加大对智能ODN的研究和投入。智能ODN的核心是采用电子标签取代纸件标签进行链路信息的自动读取,所以电子标签的性能成为产品基础。
  • 电子标签性能的关键在于标签天线的设计,用传统的天线设计技术来设计RFID标签天线面临许多问题和挑战。而采用仿真软件来设计天线,可起到事半功倍的效果。用一系列图片说明了如何用射频仿真软件ADS设计UHF RFID标签天线。
  • RF电路设计的主要困难之一是保持天线和收发器之间的良好匹配。在实验室中调整系统可能很方便,但实验室中的条件很少反映系统在现实世界中会遇到的情况。安装后,系统性能会受到环境条件的极大影响,例如设计与金属或水的接近程度。
  • AT89C51是一种低功耗高性能的8位单片机,片内带有一个4k字节的Flash可编擦除只 读存储器(PEROM),它采用了CMOS工艺和ATMEL公司的高密度非易失性存储器(NURAM)技术,而且其输出引脚和指令系统和MCU_51系列 单片机兼容。片内的Flash存储器允许在系统内可改编程序或用常规的非易失性的存储器编程器来编程。同时已具有三级程序存储器保密的性能。
  • 目前这些协议被统称为800-900MHz超高频射频识别。而这些协议都继承了高速应答,快速盘点,读写距离较远的特点。而这些热门协议产品的性能成为使用的关键。其中尤其是标签,处于竞争激烈的中心。射频识别标签单价较低,但是用量很大,对于设计制造就要求更高。由于标签设计技术和生产工艺的缺陷和不稳定,就必须由性能测试来把关。
  • RFID标签包含天线和芯片,二者均具有复数阻抗。对于无源标签来说,因为标签工作所需功耗全部来源于读写器发射的射频能量,所以天线和芯片之间能否实现良好的匹配和功率传输,直接影响到系统功能的实现,也很大程度上决定了标签的关键性能。
  • 传统的超高频RFID读写模块一般都会对天线驻波比较敏感,当天线回波过大时将导致发射机输出功率泄漏到接收机中能量较多而引起阻塞现象,进而使读写器性能恶化。在此描述了一种新型超高频读写模块的电路设计,通过在天线与耦合器之间嵌入一种闭环可调谐匹配网络,有效解决了天线驻波失配情况下导致接收机性能蜕化的现象。实验结果证明采用这种新型模块的读写器无论从读写距离还是多标签处理性能上都获得了较大提升,达到了预期的效果。
  • 近年来射频识别(Radio Frequency of IdenTIficaTIo,RFID)技术的应用逐渐广泛,同时也倍受重视。特别是UHF频段的RFID系统,由于其传输距离远、传输速率高,受到了更多地关注。典型的RFID系统由RFID阅读器和标签两部分组成,RFID无源标签依靠RFID阅读器发射的电磁信号供电,并通过反射调制电磁信号与阅读器通信。因此,RFID标签天线设计的优劣对其系统工作性能有关键的影响。
  • 巴伦(Balun)也称平衡转换器,是微波平衡混频器、倍频器、推挽放大器和天线馈电网络等平衡电路布局的关键部件,可以说是无线局域网射频前端电路设计的一项关键技术,直接影响着无线通信的性能和质量。而差分天线馈线的主要任务就是高效率的传输功率,同时要保证对称阵子的平衡馈电。而在超短波频段,如果采用平行双导线做其馈电,虽然能保证这种平衡性,但由于其开放式的结构,将会产生强烈的反射,为防止电磁能量的漏失和不易受气候和环境等因素的影响,馈线通常采用屏蔽式同轴电缆,但如果直接与天线端相连,将会破坏天线本身的对称性。这种不平衡现象不仅改变了天线的输入阻抗匹配,而且使天线方向图发生畸变。
  • RF OTA (Over The Air )测试会模拟产品的无线信号在空气中的传输场景,而此种测试方式,可将产品内部辐射干扰、产品结构、天线的因素、射频芯片收发算法、甚至人体影响等因素考虑进去,是一种在自由空间验证无线产品空口性能的综合性测试方法,非常接近产品实际使用场景。
  • Q值一般统称品质因数,它是衡量一个元件或谐振回路性能的一个无量纲单位。简单地说是理想元件与元件中存在的损耗的比值。这个元件可以是电感、电容、介质谐振器、声表面波谐振器、晶体谐振器或LC谐振器。Q值的大小取决于实际应用,并不是越大越好。例如,如果设计一个宽带滤波器,过高的Q值如果不采取其他措施,将使带内平坦度变坏。在电源退耦电路中采用LC退耦应用时高Q值的电感和电容极容易产生自谐振状态,这样反倒不利于消除电源中的干扰噪声。反过来,对于振荡器我们希望有较高的Q值,Q值越高对振荡器的频率稳定度和相位噪声越有利。
  • RFID应用越来越广泛,市场规模也在不断扩大,同时在技术上的要求也在趋于多样化个性化。该文提出了一种超小型433 MHz PCB天线,增益为-17 dB,达到了RFID系统的应用要求。该天线半径为14 mm的半圆区域,尺寸小,同时满足标签小型化和天线性能两方面的要求。
  • 应用于复杂介质环境下RFID天线,只要掌握了适合的设计方法,不仅易于达到预期的设计目标,还会使原本复杂的工作变得简单化,设计目标、设计周期、设计成本透明化。不要再通过制作一大堆各种形状天线通过性能测试或试验,来选择适合的天线了,因为我们已经知道什么样的天线才是适合的。
  • 射频识别(RFID)技术近年来得到了广泛的重视和应用。UHF频段的RFID 系统,由于其传输距离远、传输速率高,受到了更多地关注。典型的RFID系统由RFID 阅读器和标签两部分组成,RFID无源标签依靠RFID 阅读器发射的电磁信号供电,并通过反射调制电磁信号与阅读器通信。因此,RFID读写器天线设计的优劣对其系统工作性能有关键的影响。
  • 螺旋天线(helical antenna)是一种具有螺旋形状的天线。它由导电性能良好的金属螺旋线组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地的金属网(或板)相连接。螺旋天线的辐射方向与螺旋线圆周长有关。当螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一个波长的数量级时,最强辐射出现在螺旋旋轴方向上。螺旋天线是天线的一种,可以收发空间中旋转的偏振电磁信号。这种天线通常用在卫星通讯的地面站中。用非平衡馈线,比如同轴电缆来 螺旋天线连接天线,电缆中心连接在天线的螺旋部分,电缆的外皮连接在反射器上。
  • 近年来射频识别(Radio Frequency of Identificatio,RFID)技术的应用逐渐广泛,同时也倍受重视。特别是UHF频段的RFID系统,由于其传输距离远、传输速率高,受到了更多地关注。典型的RFID系统由RFID阅读器和标签两部分组成,RFID无源标签依靠RFID阅读器发射的电磁信号供电,并通过反射调制电磁信号与阅读器通信。因此,RFID标签天线设计的优劣对其系统工作性能有关键的影响。
  • 近年来,射频识别(RFID)技术取得了广泛的商业应用,特别是我国政府于2009年开始出台相关政策,提出要大力发展物联网技术与产业,而物联网的核心技术之一即为RFID。在RFID系统中,天线作为能量的转换器,在发送和接收信息的过程中实现了电磁能量的相互转换。因此,天线的性能好坏直接影响整个系统的性能。
  • RFID标签芯片的灵敏度是芯片刚刚被激活所需的最小能量。灵敏度是标签芯片最重要的性能指标,它的大小直接影响RFID标签的性能,例如标签读/写距离等。因此标签芯片灵敏度准确测试是芯片测试的重要内容之一。
  • 针对传统输变电设备在线监测系统难以满足故障定位精确、多参数集中监测的现状, 提出一种新型输变电设备在线监测系统架构, 并重点研究了用于状态监测的智能电子装置( IED) 。设计了一种基于射频识别( RFID) 技术的状态监测 IED, 主要由微处理器、温度传感器、电流传感器、电压传感器和一种有源 RFID 芯片构成。仿真与测试结果表明: IED 天线回波损耗约为 - 13. 1 dB, 载波频率为 865. 8 MHz 时,IED 最大读写距离为 18 m, IED 驱动电流和工作电流分别为 520, 210 μA, 性能优于 SL9000A。
  • 射频识别是一种使用射频技术的非接触自动识别技术,具有传输速率快、防冲撞、大批量读取、运动过程读取等优势,因此,RFID技术在物流与供应链管理、生产管理与控制、防伪与安全控制、交通管理与控制等各领域具有重大的应用潜力。从RFID技术原理上看,RFID标签性能的关键在于RFID标签天线的特点和性能。
  • 射频识别(RFID)是物联网感知环节识别物体、采集信息的重要手段[1-2]。近年物联网被世界各国作为战略性新兴产业加以培育和发展,RFID已经成为通信和电子领域的一个关键技术,引起了广泛关注。振荡器是RFID射频前端的关键模块,低功耗和小体积是RFID的两个重要性能指标[3-4]。但目前射频振荡器主要采用压控振荡器(VCO)[5],由于VCO同时采用晶体管和二极管两个有源器件,很难满足RFID对低复杂度的要求,需要针对RFID研究新的振荡器设计方法。
  • 本文主要对双频微带天线的理论知识进行介绍,并设计了一款谐振频率915MHz和2.45GHz附近的双频RFID读写器微带天线,同时,利用HFSS对天线进行仿真、优化。最后加工实物利用微波暗室对天线的性能进行测试。
  • 由于印刷天线的性能主要取决于导电油墨之导电粒子固形份含量及印刷膜厚等二样制程参数,且此二项参数可掌控影响制程良率结果的74%,这显示印刷被动式电子标签技术良率将深受导电油墨材料特性所影响。
  • 采用有限元的方法对一选定天线的场强进行仿真分析,并结合实际测试来研究和论证的。工作频率为13.56 MHz。基于亥姆霍兹线圈磁场叠加的原理,考虑在工作天线附近增加一开路线圈,区别是线圈与工作天线不直接相连。在电磁场环境下,附加的开路线圈感应出相应的电流和磁场进而对工作天线产生影响,并且改善工作天线的阻抗,通过调整附加线圈与工作天线之间的距离来增强所需位置的场强。此方法分析了附加线圈与工作天线之间不同的位置、距离以及附加线圈的大小和通断等情况,给出了这些情况下工作天线的电流和磁场的变化。通过仿真和实测数据表明此方法的有效性。
  • 本文采用Impinj最新的R2000进行UHF RFID设计,可支持多协议兼容,标签处理速度高达每秒400多张,此超高频射频识别系统尤其适用于物流、供应链领域。实验表明,以此为核心的读写器防碰撞性能好、高级DRM算法支持每秒处理400个标签。这些特性减小了设备的开发复杂度,缩短了设备的研发周期,提高了系统性能,加快了设备的上市时间。
  • 通过试验验证了电子标签的最佳植入位置与植入方法,重点对电子标签的可靠性检测进行了研究,主要通过气泡、X光、动平衡均匀性、耐久性检测及对试验胎进行路试等检测进行试验,检测结果可以得出在轮胎中植入RFID标签不会影响轮胎的质量与安全性能。
  • 研究了不同角度、不同阶数的基于Koch曲线的天线性能,仿真和测试结果表明,在保持天线长度不变的条件下,随着角度和阶数的增加,天线的谐振频率下降,而天线的方向图依然具有半波振子的低方向性。在此基础上,综合Koch和Hilbert曲线,设计了一款尺寸为55mm×10mm的小型化电子标签。该标签天线不仅具有半波阵子的低方向性,而且简单、便于调谐。
  • 本文简要介绍了由13.56 MHz射频芯片设计的RFID读卡器,重点论述该读卡器天线的设计与实现。经实践证明,该天线具有良好的性能,使用该天线的阅读器工作稳定。
  • 在近场通讯 (NFC) 设计中,开发人员向来都面临各种关于优化射频性能、硬件设计和软件方面的挑战。 但现在,单片式 NFC 解决方案和全方位的软件支持极大地改变了在家用电子设备、可穿戴设备和物联网 (IoT) 设备设计中整合 NFC 功能的本质。因此,开发人员可以加入诸多应用功能,却几乎不会影响设计封装、功耗或项目计划。