物联传媒 旗下网站
登录 注册
高频
  • 下面我们一起来了解下其中一款UHF频段RFID的RF测试要点。
  • 在希望读取的距离更远且电波的扫描范围更宽,一般都是采用超高频RFID。
  • 上一期我们了解了“低频RFID”的基本原理与实际应用,它作用范围现在主要应用于短距离技术领域范围内。本期课堂阿库将为你讲讲高频RFID的故事~ 一起来看看低频RFID与高频RFID之间有何区别?
  • 超高频RFID标签市场应用场景相当广阔,具有能一次性读取多个标签、识别距离远、传送数据速度快,可靠性和寿命高、耐受户外恶劣环境等优点。
  • 近年来,随着RFID技术的普及,超高频无源RFID标签广泛应用于资产管理、仓储管理、产线管理、物流管理、档案管理、供应链管理、零售管理及车辆管理等行业。今天我们就来探讨下关于超高频无源RFID标签电路的设计的那些研究。
  • 近年来,由于人们对RFID技术在认知上的不断深入,以及应用成本的不断降低,RFID在各行各业中不断加速渗透。
  • 该设计选用W78E465作为主控模块,IntelR1000收发器作为射频模块。该设计可以作为手持终端,并用RS 232串行通信模块和电平转换接口MAX232与上位机相连。系统硬件原理见图1。
  • 门禁系统作为一种新型现代化安全管理系统,集自动识别技术、计算机控制信息管理措施为一体,涉及电子、机械、光学、计算机技术、通讯技术、生物技术等诸多技术。
  • 目前这些协议被统称为800-900MHz超高频射频识别。而这些协议都继承了高速应答,快速盘点,读写距离较远的特点。而这些热门协议产品的性能成为使用的关键。其中尤其是标签,处于竞争激烈的中心。射频识别标签单价较低,但是用量很大,对于设计制造就要求更高。由于标签设计技术和生产工艺的缺陷和不稳定,就必须由性能测试来把关。
  • RF采样转换器可捕获高频信号和大带宽信号;但是,并非每种应用都能利用需要极高速采样的信号。就带宽或输出频率不过高的情况而言,利用RF采样转换器的高采样速率能力仍存在一大优势。
  • 由于超高频RFID的接收和发射频率相同,读卡器结构基本为零中频结构。零中频结构的接收机射频前端没有选择滤波器,对邻近频率的信号抗干扰能力很弱。我国在《800/900 MHz频段射频识别(RFID)技术应用规定(试行)》中规定的跳频间隔为250 kHz,这对零中频结构的RFID读卡器在多询问机环境下工作是一个很大的技术难点。所以,在现阶段的多询问机环境下工作的UHF RFID读卡器,基本是工作于时分复用方式。在读卡器中加入单刀多掷开关(Single Pole 4Throw,SP4T),本机轮询4个天线,可以取代另外的3个读卡器,降低整个系统成本。
  • 无线射频识别(RFID)技术是一种非接触式的自动识别技术,它通过射频信号从目标对象读写相关数据实现自动识别。RFID基本系统由标签、阅读器以及读 写器天线3部分组成。RFID技术利用射频信号作为信息传输中介实现远距离信息获取,通过高数据速率实现对高速运动物体的识别,并可同时识别多个标签。正由于RFID技术的诸多优点,它在物流管理、公共安全、仓储管理、门禁防伪等方面的应用迅速展开,国际上很多学者也已开展RFID技术与互联网、移动通信 网络等技术结合应用的研究。将RFID技术融入互联网技术和移动通信网技术中将可实现全球范围内物品跟踪与信息共享,那么,真正的“物联网”时代也就指日可待了。
  • EMC指令2014/30/EU中引用了各种技术规范,包括铁路信号设备用EN 50121-4、电力设备用50121-5、家用电气产品和设备用EN 55014,以及IT设备和多媒体设备用EN 55022和55032等新文件。满足这些技术规范是证明合规性的一个方面,另一个方面则是保持令人满意的文件。
  • 目前,大多数RFID系统为低频和高频系统,但超高频频段的RFID系统具有操作距离远,通信速度快,成本低,尺寸小等优点,更适合未来物流、供应链领域的应用。尽管目前,RFID超高频技术的发展已比较成熟,也已经有了一些标准,标签的价格也有所下降;但RFID超高频读写器却有变得更大,更复杂和更昂贵的趋势,其消耗能量将更多,制造元件达数百个之多。然而,这里的设计采用高度集成的R1000,可以解决上述问题,既可降低芯片设计中的复杂性和生产成本,又能使制造商制造出体积更小,更有创新性的读写器,从而开拓新的RFID应用领域。
  • 电磁兼容的问题常发生于高频状态下,个别问题(电压跌落与瞬时中断等)除外。高频思维,总而言之,就是器件的特性、电路的特性,在高频情况下和常规中低频 状态下是不一样的,如果仍然按照普通的控制思维来判断分析,则会走入设计的误区。
  • RFID应用越来越广泛,市场规模也在不断扩大,同时在技术上的要求也在趋于多样化个性化。该文提出了一种超小型433 MHz PCB天线,增益为-17 dB,达到了RFID系统的应用要求。该天线半径为14 mm的半圆区域,尺寸小,同时满足标签小型化和天线性能两方面的要求。
  • 基于 NI TestStand 管理软件,设计了一套测试软件,实现了对符合 ISO/IEC 18000-63 协议的芯片清点功能的测试。本测试软件使用 NI RFID 测试仪,根据测试设计人员的需求开发出自动化测试序列,自动完成与被测芯片的通信交互,实现对响应的判断,并完成结果的保存。该软件充分采用了 NI TestStand,相比之前测试清点功能的传统的手动测试、半自动测试,测试时间分别缩短了 5/6、2/3。实践证明,使用本测试软件可以提高对超高频电子标签开展功能测试的效率。
  • 采用有限元的方法对一选定天线的场强进行仿真分析,并结合实际测试来研究和论证的。工作频率为13.56 MHz。基于亥姆霍兹线圈磁场叠加的原理,考虑在工作天线附近增加一开路线圈,区别是线圈与工作天线不直接相连。在电磁场环境下,附加的开路线圈感应出相应的电流和磁场进而对工作天线产生影响,并且改善工作天线的阻抗,通过调整附加线圈与工作天线之间的距离来增强所需位置的场强。此方法分析了附加线圈与工作天线之间不同的位置、距离以及附加线圈的大小和通断等情况,给出了这些情况下工作天线的电流和磁场的变化。通过仿真和实测数据表明此方法的有效性。
  • 本文的NXP实用的NFC电子钱包解决方案,以13.56MHz的操作频率为基础,以手机为交易平台,由NXP PN544 NFC控制器(PN65O内置了安全模块)和安全模块两大部分实现移动支付及数据交换功能,为电子支付提供便捷、安全、超凡体验。
  • 超高频无源RFID 标签(UHF Passive RFIDTag)是指工作频率 在300M~3GHz 之间的超高频频段内,无外接电源供电的RFID 标签。这种超高频无源RFID 标签由于其工作频率高,可读写距离长,无需外部电 源,制造成本低,目前成为了RFID 研究的重点方向之一,有可能成为在不久的将来RFID 领域的主流产品。
  • 超高频RFID系统,由阅读器通过天线发射指令给标签,完成阅读器与标签之间的通信。其中,阅读器天线、标签天线以及阅读器天线与标签之间的通道涉及到电磁场的相关知识,比较晦涩,但是如果解决不好,会导致系统串读与漏读现象发生,这也是超高频RFID至今不稳定的根本原因所在。小编尝试以简单的方式细细分析。
  • 本文介绍了如何利用芬兰的标签性能测试仪来测试超高频RFID读写器天线的方向图和增益。
  • 本文所讨论的系统基于RFID高频13.56 MHz的工作频率,针对目前逐步呈现集中化、规模化、工业化的洗衣工厂以及其服务对象如医院、宾馆等,可以大幅提高工业洗衣企业管理效率,降低管理过程中的错误率,最终达到有效管理、以管理促生产的目的。
  • 本文介绍了高频RFID读写芯片MFRC530和USB接口芯片CH374T,给出了13.56MHZ阅读器的设计方法,对单片机控制MFRC530的具体开发方案和电路原理图进行分析。通过USB接口,实现了上位机和阅读器之间的数据传输,并详细介绍下位机软件的实现。
  • 超高频无源RFID 标签(UHF Passive RFIDTag)是指工作频率 在300M~3GHz 之间的超高频频段内,无外接电源供电的RFID 标签。这种超高频无源RFID 标签由于其工作频率高,可读写距离长,无需外部电 源,制造成本低,目前成为了RFID 研究的重点方向之一,有可能成为在不久的将来RFID 领域的主流产品。
  • 本文设计出4天线RFID读写器核心模块,目的是提高RFID读写器的群读能力、辐射范围,读取标签时不受标签方位的影响,实现瞬间内读取多张标签,提高读取标签数量,以保证识别率,使用户在较少设备下实现高性能的读取效果,为用户节省应用成本。
  • 日前,由中国汽车工业协会、AI《汽车制造业》杂志共同主办的第十六届“先进制造技术与汽车制造业”高层论坛暨第四届AI“用户好评奖”颁奖典礼在京隆重举行。倍加福UHF超高频F190系列产品,凭借其优异的性能获得用户的广泛赞誉,帮助客户提高效率、降低成本、创造价值。凭借这些长期给客户带来的出色表现,倍加福再次荣获AI“用户好评奖”。
  • 本文介绍了超高频射频识别(RFID)标签灵敏度测试的原理、参数和实践。其中详细分析了灵敏度测试各项指标的物理意义和测试方法,给出了典型测试条件下发射功率、传输损耗、接收功率等参数的典型值。本文还提供了实际测试案例。
  • 本文介绍了一种超高频RFID读写器基带模块的原理和设计方法。一句ISO/IEC18000-6协议,提出将单片机与FPGA相结合,重复利用两者优点来实现设计。文中描述了单片机和FPGA协调工作的方法,着重阐述了编码、译码、出错校验等模块的原理和功能以及在FPGA中实现各模块的方法。
  • 根据超高频RFID国际标准协议EPC GEN2中的规定,基于ARM9芯片S3C2440提出一种适用于超高频读写器的PIE编码以及MILLER2解码的实现方式。设计中使用该芯片的PWM输出进行编码,并使用其外部中断进行解码。通过分析示波器捕捉到的MILLER2波形以及串口打印的解码输出,验证了该设计的正确性。
  • 射频识别是一种非接触式的自动识别技术,他通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境。射频识别系统由阅读器和应答器(标签)构成。当他工作时,阅读器通过天线发送出一定频率的射频信号,当标签进入磁场时产生感应电流从而获得能量,发送出自身编码等信息被读取器读取并解码后送至电脑主机进行有关处理[1]。高频功率放大器是阅读器的关键部件,主要功能是对标签信号的返回信号进行功率放大。
  • 本文提出了一种基于ISO/IEC 18000-6B标准的低成本、便携式的超高频RFID读写器的设计。该设计采用了基于零中频结构的射频收发机模块和以单片机为主的数字基带处理模块,从而实现了低成本,并且达到了单标签80bit/5ms的读写速度。读写器不需外接天线,具有单机工作模式,便于携带,包括机壳在内重量不足200克。读写器可在860MHz~960MHz的频率范围内进行跳频操作,从而可以避免频带内其他信号的干扰。另外还可以在受控工作模式下进行在线升级,并在有相应软件支持下可以支持其他标准或多标准。目前已经进入产品化阶段。